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Adaptive Sensor Arrays 

•  Array topology / # sensors 
–  Resolution, sidelobes,

 ambiguities, etc. 
•  Operating frequency / bandwidth 
•   Power constraints, cost, etc. 

Radar Comms/SIGINT Sonar 

θ 

•  Spatial filtering 

•  Adapt to changing
 environment 

•  Spatial diversity increases
 capacity 

Wide Application Areas 

General Beamformer 

Algorithm Design/Analysis 

Conventional System Design 

Weiner
 Solution 

•  Detection, estimation / localization /
 classification, and tracking 

•  Metrics: Optimal Neyman-Pearson,
 Max signal-to-interference + noise
 ratio (SINR), Min mean squared error
 (MSE), etc. 

•  Theoretical performance analysis 
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Maximum-Likelihood Estimation 

•  Post-detection it is desired to estimate parameters of target 

•  Maximum-likelihood (ML) often effective approach: 
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Maximum-Likelihood Estimation 

•  Post-detection it is desired to estimate parameters of target 

•  Maximum-likelihood (ML) often effective approach: 

•  ML requires non-linear search (“beamsplitting”) 
–  Optimal asymptotically, but with threshold effect 

•  GOAL: Predict MSE performance near threshold 

Mean Squared
 Error (MSE): 
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Nonlinear Estimation and Ambiguity Functions 

ML 
Ambiguity Function 

•  ML involves nonlinear search on
 finite interval 

•  PDF aggregates density around
 maxima of ambiguity function (AF) 

•  Divide interval into M sub-intervals 

–  “No Interval Error” (NIE) 
   Local Errors 

–  “Intervals of Error” (IE) 
   Global Errors 

•  Use intervals to approximate MSE 
–  Estimation approximately a M-ary

 hypothesis testing problem 

€ 

θ

(dB) 

Histogram of ML Estimates 
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θ
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|S|2 |v

H(θ)R−1v(θ1)|2
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�θML = argmax
θ

|vH(θ)�R−1x|2

vH(θ)�R−1v(θ)
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Approximating MSE Performance: 
Based on Method of Interval Errors (MIE) 

•  MSE given by 
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⎨ 
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⎫ 
⎬ 
⎭ 
≡ ω −θ1( )2 p ˆ θ 

ω( )dω∫
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Both are functions of the estimated covariance 
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Interval Error Probability  
for Adaptive ML Estimation 

•  Asymptotic MSE approximated: 

–  Adjustment of Cramér-Rao Bound (CRB)* [No Mismatch] 

–  Taylor series [Array Response Mismatch] 

*Exact formulae derived in Richmond, IEEE T-IT, Vol. 52, No. 5, May 2006 

•  Union bound suggests pairwise error approximation*:  

No Mismatch Array Response Mismatch 
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ML Asymptotic MSE: 
 Taylor Series Based Approach (1/3) 

•  Define function                                                  and note that 

where  and 
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ML Asymptotic MSE: 
Taylor Series Based Approach (2/3) 

•  Since                                     and                                  the MSE can  
     be expressed as  

where and 

�θML − θ̃ � 1

f̈(θ̃,R−1,RT )
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


�

∂ḟ

∂A

�T

A=R−1

∆R−1






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•  Note that                                   since                             and 
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∂ḟ

∂A

�T

A=R−1

∆R−1









normalization of             can be chosen such that 

•  Note that                                   since                             and 

•  Mismatch analysis addressed via choice of  

v(θ1) �= dsuch that  RT = E{xxH} = R+ |S|2ddH
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ML Asymptotic MSE: 
Taylor Series Based Approach (3/3) 

•  Squaring quadratic, and taking expectation one obtains the  
     desired asymptotic MSE: 

*Richmond, Proceedings of IEEE SAM Workshop, 2006 
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E tr2
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
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∂ḟ
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
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R known* + Accuracy Loss 
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NEW 

•  MSE is that obtained assuming            is known plus an  
     additional term accounting for accuracy loss due to 
     estimation of  

R−1

R−1
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ML Asymptotic MSE: 
Taylor Series Based Approach (3/3) 

•  Squaring quadratic, and taking expectation one obtains the  
     desired asymptotic MSE: 

*Richmond, Proceedings of IEEE SAM Workshop, 2006 
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∂ḟ

∂A

�T

A=R−1

∆R−1





[f̈(θ̃,R−1,RT )]2

•  Moments of complex Gaussian process, and moments of  
     inverted Wishart complete analysis 
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NEW 

•  MSE is that obtained assuming            is known plus an  
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     estimation of  
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Outline 

•  Introduction 

•  Mean-squared error prediction 

•  Numerical examples 

•  Summary 
ü 
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Broadside Planewave Signal in White
 Noise: No Mismatch, ULA 

•  N=18 element uniform linear array (ULA), (λ/2.25) element spacing 
–  3dB Beamwidth ≈ 7.2 degs, search space [60 120] degs 
–  0dB white noise, True Signal @ 90 degs (broadside) 

•  Asymptotic ML MSE agrees with CRB above threshold SNR 
•  MIE MSE predictions very accurate above and below threshold 
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Broadside Planewave Signal in White
 Noise: No Mismatch, ULA 

•  N=18 element uniform linear array (ULA), (λ/2.25) element spacing 
–  3dB Beamwidth ≈ 7.2 degs, search space [60 120] degs 
–  0dB white noise, True Signal @ 90 degs (broadside) 

•  Asymptotic ML MSE agrees with CRB above threshold SNR 
•  MIE MSE predictions very accurate above and below threshold 
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Broadside Planewave Signal in White
 Noise: No Mismatch, ULA, L=1.5N 

•  N=18 element uniform linear array (ULA), (λ/2.25) element spacing 
–  3dB Beamwidth ≈ 7.2 degs, search space [60 120] degs 
–  0dB white noise, True Signal @ 90 degs (broadside) 

•  Asymptotic ML MSE agrees with CRB above threshold SNR 
•  MIE MSE predictions very accurate above and below threshold 
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Broadside Planewave Signal in White
 Noise: No Mismatch, ULA, L=2N 

•  N=18 element uniform linear array (ULA), (λ/2.25) element spacing 
–  3dB Beamwidth ≈ 7.2 degs, search space [60 120] degs 
–  0dB white noise, True Signal @ 90 degs (broadside) 

•  Asymptotic ML MSE agrees with CRB above threshold SNR 
•  MIE MSE predictions very accurate above and below threshold 
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Off Broadside Planewave Signal in
 White Noise: Perturbed ULA, L=2N 

•  N=18 element ULA positions perturbed by 3-D Gaussian noise 
–  Zero mean with stand. dev. 0.04λ 
–  Array perturbation from single realization of Gaussian noise process 

•  CRB no longer useful, while MIE accurate above and below threshold 
•  Mismatch can increase threshold SNR and introduce asymptotic bias 
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Broadside Planewave Signal in White
 Noise: Perturbed ULA, L=2N 

•  N=18 element ULA positions perturbed by 3-D Gaussian noise 
–  Zero mean with stand. dev. 0.1λ 
–  Array perturbation from single realization of Gaussian noise process 

•  CRB no longer useful, while MIE accurate above and below threshold 
•  Mismatch can increase threshold SNR and introduce asymptotic bias 

R
M

SE
 in

 B
ea

m
w

id
th

s 
(d

B
) 

Element Level SNR (dB) 

Threshold 
SNR 

From 4000 
Monte Carlo 
Simulations 

ULA 
Element 

Positions 

    

€ 

zn + N 3 0,I3σRMS
2( )

  

€ 

σRMS = 0.1λ

D
is

ta
nc

e 
(in

 u
ni

ts
 o

f λ
) MC R unknown 

MC R known 
MSE Prediction 
Asymptotic MSE 
Cramér-Rao Bnd 



C. D. Richmond-54 
FoCM 2011, Budapest, Hungary 

10 0 10 20 3020

15

10

5

0

5

•  N=18 element uniform linear array (ULA), (λ/2.25) element spacing 
–  Sidelobe target 2dB above noise @ 75degs  

•  SINR loss and threshold region results from competing targets 
•  Asymptotic MSE ∝ 1/SNR due to signal living on ML manifold 
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Signal in White Noise: Perturbed ULA  
+ 2dB Sidelobe Target (SLT), L=2N 

•  N=18 element ULA positions perturbed by 3-D Gaussian noise 
–  Zero mean with stand. dev. 0.1λ 
–  Array perturbation from single realization of Gaussian noise process 
–  Sidelobe target 2dB above noise @ 75degs 

•  CRB no longer useful, while MIE accurate above and below threshold 
•  Mismatch affects both threshold region and asymptotic performance 
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Outline 

•  Introduction 

•  Mean-squared error prediction 

•  Numerical examples 

•  Summary ü 
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Summary 

•  Developed theory to predict impact of signal mismatch on ML
 estimation accuracy 

–  arbitrary deterministic signal mismatch allowed 
–  above and below threshold SNR performance considered 
–  finite sample effects due to noise covariance estimation included 

•  Generalizes previous work on ML threshold region performance
 and provides tools useful for system design and analysis 

•  Circumvents need for time consuming Monte Carlo simulation 

•  Examples show estimation loss introduced by uncertainties in R
 and v can be significant and should be considered in design 
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Backups 
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Abstract 
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ML Asymptotic MSE: 
Approximate Taylor Series Based Approach* 

    

€ 

ˆ θ ML −θG ≈ −
2 / K

˙ ̇ f θG ,RT ,0,1/ K( )
Re ˙ w H θG( )ΔRT w θG( )[ ] +{

    

€ 

Re ˙ w H θG( )RT t[ ] + Re ˙ w H θG( )RT w θG( )[ ] χ −1/ K( )}

•  Following Taylor Series approach it can be shown that 

MSE obtained from Mean and Variance of   

€ 

ˆ θ ML −θG

Known R  

Unknown R  

*Richmond, Proceedings of ASAP 2006 

    

€ 

ˆ R T = xxH ,

    

€ 

f θ, ˆ R T ,t,χ( ) ≡ χ w θ( ) + t[ ]H ˆ R T w θ( ) + t[ ]•  Quadratic function defined 

    

€ 

E xxH{ } ≡RT = R + S 2ddH ,

    

€ 

w θ( ) ≡
R−1v θ( )

vH θ( )R−1v θ( )
,where 

χ and t are random quantities* modeling errors in w(θ) due to unknown R 

    

€ 

ˆ w θ( ) ≡
ˆ R −1v θ( )

vH θ( ) ˆ R −1v θ( )
= χ w θ( ) + t[ ]

    

€ 

ˆ R ≡ 1
L

XXH


