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Signal and Interference Environment
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Airborne Surveillance Radars:
Signal and Interference Environment
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Maximum-Likelihood Estimation

* Post-detection it is desired to estimate parameters of target

*  Maximume-likelihood (ML) often effective approach:

Orr = argmglxlnp(xw, R) OniL = argrg%iclnp(x, x(1),...,x(L)|6,R)
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Maximum-Likelihood Estimation

* Post-detection it is desired to estimate parameters of target

Test cell

* Maximume-likelihood (ML) often effective ach: /Nmse only samples
Orr = argmaxlnp (x]0,R) OniL = argmaxlnp x, x(1 L), R)
Clai . 4 R known: R unknown: ) Ad
airvoyan ~ aptive
Matched Onsr = arg max v (R x|? Orrr — arg max VT(OR %> | Matched
Filter o vE(@R-1v(9) | M 0 vH(9)R-1v(0) Filter
\.

where x ~ CNy (Sv(A1),R), R x Z X ,and x(I) ~CN'y (0,R)
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Maximum-Likelihood Estimation

* Post-detection it is desired to estimate parameters of target

Test cell

* Maximume-likelihood (ML) often effective ach: / Noise only samples

Orr = argmaxlnp (x]0,R) OniL = argmaxlnp x, x(1 L), R)

Clai . 4 R known: R unknown: A Adati
airvoyan ~ aptive
Matched |5~ _ . omax v (R x|? 0. — aromax VT(OR %> | Matched

Filter ML o vH(O)R-1v(6) ML &1 vH (g)ﬁ—lv(g) Filter

g
where x ~ CN y (Sv(0,),R R X Z X ,and x(I) ~CNn (0,R)

Mean Squared
* ML requires non-linear search (“beamspllttlng”) Error (MSE):

— Optimal asymptotically, but with threshold effect ~ 2
E (eML _ 91)
* GOAL: Predict MSE performance near threshold
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Nonlinear Estimation and Ambiguity Functions

~ vE()R1x[2 ¢ ML involves nonlinear search on
Or L = argmax V(O R-1v(6) finite interval
ML
LIV (9)R-1v(p, )2 Ambiguity Function =Y ,r (9)
5| VA (O)R-1v(6) * PDF aggregates density around
maxima of ambiguity function (AF)
(dB)
* Divide interval into M sub-intervals
0
Histogram of ML Estimates —  “No Interval Error” (NIE)

Local Errors

“Intervals of Error” (IE)
Global Errors

* Use intervals to approximate MSE

— Estimation approximately a M-ary
hypothesis testing problem
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Nonlinear Estimation and Ambiguity Functions

7 v#(9)R'x|2 ¢ ML involves nonlinear search on
= arg max = ‘nite i
ML 0 vH(O)R-1v(0) finite interval
ML
o [VI(OR1v(0))]? Ambiguity Function = (9)
5] VH(O)R1v(0) T S * PDF aggregates density around
RPN PR maxima of ambiguity function (AF)
(dB)
 NIE 7 1 * Divide interval into M sub-intervals
I R A
Histogram of ML Estimates —  “No Interval Error” (NIE)
Abprbx.; : : : ) Local Errors )
PDF of 0, —  “Intervals of Error” (IE)

Global Errors

* Use intervals to approximate MSE

— Estimation approximately a M-ary
hypothesis testing problem

C. D. Richmond-28
FoCM 2011, Budapest, Hungary



Approximating MSE Performance:
Based on Method of Interval Errors (MIE)

« MSE given by E{(é - 01)2} = f(a) — Hl)zpé(a))da)
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Approximating MSE Performance:
Based on Method of Interval Errors (MIE)
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Approximating MSE Performance:
Based on Method of Interval Errors (MIE)

« MSE given by E{(é - 01)2} = f(a) — Hl)zpé(a))da)

~[(w=0)x "+/8 1 Q t ¢ do
1 . J -
IE NIE IE

“l ocal Errors” “Global Errors”

M A
01}5 [1 - > = em\el)
m=2

M
03, (6)+ X pl6u =0,061) (6, -6,

m=2

E{(ém _ 91)2

» Challenge is calculation of error probabilities and asymptotic MSE:
. L S
p(HML = Hm‘gl) =" OML(Hl) ="

Both are functions of the estimated covariance
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Interval Error Probability
for Adaptive ML Estimation

* Union bound suggests pairwise error approximation®:
p (‘/g\ML == (9m|E{X} — Sd) ~

Pr( V(0 R X v (0)Rx
H@O, ) R-1v(0,,) vH(O)RIv(6,)

No Mismatch Array Response Mismatch
v(f,) =d v(f) #d

* Asymptotic MSE approximated:

E{x} = Sd)

— Adjustment of Cramér-Rao Bound (CRB)* [No Mismatch]

— Taylor series [Array Response Mismatch]

oo g0 anasest, wungary “EXact formulae derived in Richmond, IEEE T-IT, Vol. 52, No. 5, May 2006



Asymptotic ML MSE with Signal Mismatch

» Asymptotic MSE (jitter) given by

o2, (6,) = E{(ém - 01)2} V:ZFB()G)

C. D. Richmond-34
FoCM 2011, Budapest, Hungary

ML Ambiguity Fnc with Mismatch

—i i=— Bias
: True-Signal

Direction




Asymptotic ML MSE with Signal Mismatch

ML Ambiguity Fnc with Mismatch

« Asymptotic MSE (jitter) given by — = Bias
: True.Signal
: \ Direction

o2, (6,) = E{(ém 01)2} V:ZFB()G)
- [E{(bu. -0)}] + ({00 -0) 0
Bias Variance

AN ~

where bias can be written as F { (é\ML — 91)} =F { (HML — 9)} +(0—6,)
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Asymptotic ML MSE with Signal Mismatch

ML Ambiguity Fnc with Mismatch
- Asymptotic MSE (jitter) given by — = Bias

: : True-Signal
: \ Direction

o) - (B -0} ey
_ l E{(éML - Hl)}]z + E{(ém _ é)z} )
Bias Variance

AN ~

where bias can be written as F { (é\ML 91)} =F { (HML — 9)} +(0—6,)

Goal is to determine the necessary expectations
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ML Asymptotic MSE:
Taylor Series Based Approach (1/3)

vE(0)ABAHv(0)
v (0)Av(0)
AN L AN
O, = arg max f(6,R™', Ry) where R ZX(Z)XH(Z) and Ry = xx"
=1

* Define function f(6,A,B) = and note that
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ML Asymptotic MSE:
Taylor Series Based Approach (1/3)

vE(0)ABAHv(0)
v (0)Av(0)
AN L AN
O, = arg max f(6,R™', Ry) where R ZX(Z)XH(Z) and Ry = xx"
=1

* Define function f(6,A,B) = and note that

of(0,A,B)
00

0f(0, A, B)
926

* Define partials f(,A,B) = and f(,A,B) =
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ML Asymptotic MSE:
Taylor Series Based Approach (1/3)

vE(0)ABAHv(0)
vH(0)Av(0)
AN L AN
Onmr = arg max f(6,R™', Ry) where R ZX(Z)XH(Z) and Ry = xx"
=1

and note that

* Define function f(6,A,B) =

of(0,A,B)
00

0°f(6,A,B)

and f(6,A,B) = 5

* Define partials f(9, A, B) =

* Taylor’s theorem allows the first order approximation:
f(é\MLa ﬁ_la ﬁ'T) = f(éa R_17 RT) + f(é7 R_17 RT)(é\ML - é)

tr {(S—é) :RT (Re - RT)} +tr {(S—i) :Rl (R - Rl)} +h.ot,

where g is the argument obtaining the peak value of f(0,R™ ", Rr)
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ML Asymptotic MSE:
Taylor Series Based Approach (1/3)

vE(0)ABAHv(0)
vH(0)Av(0)
AN L AN
Onmr = arg max f(6,R™', Ry) where R ZX(Z)XH(Z) and Ry = xx"
=1

and note that

* Define function f(6,A,B) =

of(0,A,B)
00

0°f(6,A,B)

and f(6,A,B) = 5

* Define partials f(9, A, B) =

* Taylor’s theorem allows the first order approximation:
fOur, R Ry) =~ f(O,R™Y, Ry) + f(O, R, Ry) (O — 6)

tr {(S—é) :RT (Re - RT)} +tr {(S—i) :Rl (R - Rl)} +h.ot,

where g is the argument obtaining the peak value of f(0,R™ ", Rr)
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ML Asymptotic MSE:
Taylor Series Based Approach (2/3)

* Since f(0y, R Ry)=0 and f(§,R"!,Ryp) =0 the MSE can

be expressed as
of | of |
~J —J —1
<8B> ARr <8A> AR
B=Rr A=R-!

where ARt = ﬁT — Ry and AR'=R'-R™!

+ tr

|

~ ~ 1
0 — 0 ~ — | tr
M f(97R_17RT) (
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ML Asymptotic MSE:
Taylor Series Based Approach (2/3)

* Since f(0y, R Ry)=0 and f(§,R"!,Ryp) =0 the MSE can

be expressed as
of | of |
~J —J —1
<8B> ARz <8A> AR
B=Rr A=R-!

P

where ARt = ﬁT — Ry and AR'=R'-R™!

+ tr

|

~ ~ 1
0 — 0 ~ — | tr
M f(97R_17RT) (

~

* Note that E{(@ML—9>}:0 since E{ART} = (0 and

AN

normalization of R~! can be chosen such that E {AR_l} -0
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ML Asymptotic MSE:
Taylor Series Based Approach (2/3)

* Since f(0y, R Ry)=0 and f(§,R"!,Ryp) =0 the MSE can

be expressed as
of | of |
~J —J —1
<8B> ARz <8A> AR
B=Rr A=R-!

P

where ARt = ﬁT — Ry and AR'=R'-R™!

+ tr

|

~ ~ 1
0 — 0 ~ — | tr
M f(97R_17RT) (

~

* Note that E{(@ML—9>}:0 since E{ART} = (0 and

AN

normalization of R~! can be chosen such that E {AR_l} -0

* Mismatch analysis addressed via choice of
Ry = E{xx} =R +|5|°dd"” suchthat v(61) #d
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ML Asymptotic MSE:
Taylor Series Based Approach (3/3)

* Squaring quadratic, and taking expectation one obtains the
desired asymptotic MSE:
of
—1
(a_A) AR
A=R-1!

a7\
B=R

E { ((/9\]\/_”; — 9~> } ~ [f(é, R-1. RT)]2 + [f(é, R, RT)]2

E tr? E tr?

FoCM 2011, Budapest, Hungary *Richmond, Proceedings of IEEE SAM Workshop, 2006



ML Asymptotic MSE:
Taylor Series Based Approach (3/3)

* Squaring quadratic, and taking expectation one obtains the
desired asymptotic MSE:
of |
—1
(a_A) AR
A=R-1!

A
E tl’2 (g—é) ART
B=R~r

E tr?

E{@ML — é)Q}

~ ——— + N
[f<07R_17RT>]2 [f(H?R_laRT)]2
NEW
~ MSE + Accuracy Loss
R known* due to Unknown R

* MSE is that obtained assuming R ™! is known plus an

additional term accounting for accuracy loss due to
estimation of R™*
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ML Asymptotic MSE:
Taylor Series Based Approach (3/3)

* Squaring quadratic, and taking expectation one obtains the
desired asymptotic MSE:
of |
—1
(a_A) AR
A=R-1!

A
E tl‘2 (g—é) ART
B=R~r

E tr?

E{@ML — é)Q}

~ ——— + N
[f<07R_17RT>]2 [f(H?R_laRT)]2
NEW
~ MSE + Accuracy Loss
R known* due to Unknown R

* MSE is that obtained assuming R ™! is known plus an

additional term accounting for accuracy loss due to
estimation of R™*

* Moments of complex Gaussian process, and moments of
inverted Wishart complete analysis
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Broadside Planewave Signal in White
Noise: No Mismatch, ULA
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— 3dB Beamwidth = 7.2 degs, search space [60 120] degs
— 0dB white noise, True Signal @ 90 degs (broadside)
* Asymptotic ML MSE agrees with CRB above threshold SNR
* MIE MSE predictions very accurate above and below threshold
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Broadside Planewave Signal in White
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* Asymptotic ML MSE agrees with CRB above threshold SNR
* MIE MSE predictions very accurate above and below threshold

C. D. Richmond-50
FoCM 2011, Budapest, Hungary



Broadside Planewave Signal in White
Noise: No Mismatch, ULA, L=2N
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' Element Level SNR (dB)
e N=18 element uniform linear array (ULA), (A/2.25) element spacing
— 3dB Beamwidth = 7.2 degs, search space [60 120] degs
— 0dB white noise, True Signal @ 90 degs (broadside)
* Asymptotic ML MSE agrees with CRB above threshold SNR
* MIE MSE predictions very accurate above and below threshold
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Off Broadside Planewave Signal in
White Noise: Perturbed ULA, L=2N

E Bk
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' Element Level SNR (dB)

e N=18 element ULA positions perturbed by 3-D Gaussian noise

— Zero mean with stand. dev. 0.04A

— Array perturbation from single realization of Gaussian noise process
* CRB no longer useful, while MIE accurate above and below threshold
* Mismatch can increase threshold SNR and introduce asymptotic bias
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Broadside Planewave Signal in White
Noise: Perturbed ULA, L=2N
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Element Level SNR (dB)
e N=18 element ULA positions perturbed by 3-D Gaussian noise
— Zero mean with stand. dev. 0.1A
— Array perturbation from single realization of Gaussian noise process
* CRB no longer useful, while MIE accurate above and below threshold
* Mismatch can increase threshold SNR and introduce asymptotic bias
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Signal in White Noise: Unknown 2dB
F Sidelobe Target, L=2N
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' Element Level SNR (dB)

¢ N=18 element uniform linear array (ULA), (A/2.25) element spacing
— Sidelobe target 2dB above noise @ 75degs

* SINR loss and threshold region results from competing targets

* Asymptotic MSE « 1/SNR due to signal living on ML manifold
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Signal in White Noise: Perturbed ULA
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+ 2dB Sidelobe Target (SLT), L=2N
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Element Level SNR (dB)
e N=18 element ULA positions perturbed by 3-D Gaussian noise

— Zero mean with stand. dev. 0.1A

— Array perturbation from single realization of Gaussian noise process
— Sidelobe target 2dB above noise @ 75degs

* CRB no longer useful, while MIE accurate above and below threshold
* Mismatch affects both threshold region and asymptotic performance
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Summary

* Developed theory to predict impact of signal mismatch on ML
estimation accuracy

— arbitrary deterministic signal mismatch allowed

— above and below threshold SNR performance considered
— finite sample effects due to noise covariance estimation included

* Generalizes previous work on ML threshold region performance
and provides tools useful for system design and analysis

* Circumvents need for time consuming Monte Carlo simulation

* Examples show estimation loss introduced by uncertainties in R
and v can be significant and should be considered in design
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Backups
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Abstract

Asymptotic Mean Squared Error Performance of Maximum-
Likelihood DOA Estimation with Estimated Noise Covariance

Christ D. Richmond*
Senior Member, IEEE, christ@]1].mit.edu

The mean squared error (MSE) performance prediction of Maximum-Likelihood (ML) Direction-
Of-Arrival (DOA) angle estimation has been studied extensively by several authors (see refs in
[1]). Most recently ML DOA performance prediction of both the threshold and asymptotic
regions in the presence of a general form of deterministic array response mismatch was
considered assuming the noise-plus-interference covariance matrix (NICM) was known [1.2].
The error probabilities required for predicting the threshold region MSE of the general case of
deterministic mismatch are derived in [3] including the unknown NICM case. Approximations of
the asymptotic MSE performance were explored in [2] based on a stochastic representation of the
ML filter weight vector, yielding only moderate success due to the approximate representation of
the functional dependence of some parameters. Herein an exact general expression for the
asymptotic DOA MSE performance for the unknown NICM case is derived based on a Taylor
Series expansion that accounts for the exact functional dependence of all parameters. It is shown
herein that the MSE expression derived in [1] is augmented by an additive term that accounts for
the loss due exclusively to NICM estimation.

[1] C. D. Richmond, “On the Threshold Region Mean-Squared Error Performance of Maximum-
Likelihood Direction-Of-Arrival Estimation in the Presence of Signal Model Mismatch,”
Proceedings of the Fourth IEEE SAM Processing Workshop, pp. 268 —272, Waltham, MA, July
2006.

[2] C. D. Richmond, “Signal Model Mismatch and Maximum-Likelihood Mean-Squared Error
Performance,” Proceedings of the Adaptive Sensor Array Processing Workshop, MIT Lincoln
Laboratory, June 2006.

[3] C. D. Richmond, “Mean Squared Error and Threshold SNR Prediction of Maximum-
Likelihood Signal Parameter Estimation with Estimated Colored Noise Covariances,” IEEE
Transactions on Information Theory, Vol. 52, No. 5, pp. 2146—2164, May 2006.
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ML Asymptotic MSE:
Approximate Taylor Series Based Approach*

 Following Taylor Series approach it can be shown that

A 2/K .
0, — 65 =~- ];(HG ,RT,O,l/K) {RGIW (HG)ARTW(%;)] +
Kno\mr/n R
Re[W" (6, )R,t]+ Re[w” (6,)R,w(6,)](x - 1/K)}
S— _

e —
Unknown R

A

MSE obtained from Mean and Variance of 6, -6,

 Quadratic function definedf(H,IAQT,t,X) = X[W(H) + t]HIART[W(H) + t]

where w \/v R V(G) ; vAv \/v R V(H) X[W(8)+t]

XxH

A ~ 1

H H| _ _ H —
RT=xx , E{XX }=RT—R+‘S‘ dd”, R 7
v and t are random quantities* modeling errors in w(6) due to unknown R
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